[personal profile] progenes
Часть 1. Вступление.
Часть 2. Фирмы и фермеры.

Постепенно переходим к теме, близкой потребителю. Возможные мутации и последствия. Это довольно разносторонняя тема. Тут и возможное влияние на личный геном, геном поколений, опасность случайного возникновения токсичных, например, белков. Будем рассматривать по-порядку.

Сегодня будет один из распространенных вопросов:

Сорта, которые вывелись нашими предками, уже как бы эволюционно адаптированы и прошли многовековой тест на съедобность и безопасность. Зачем тестировать новое на себе? Нас устраивает веками проверенное.

Возможно, сейчас я отберу у вас немного уверенности, если скажу, что те сорта, которые вывели наши предки, имеют мало общего с тем, что сейчас произрастает на полях и с тем, что мы употребляем в пищу. Мутационные процессы происходят и сейчас, а селекционный процесс непрерывно продолжается. Недавно слушала научный доклад сотрудников крупнейшего европейского генетического банка культурных растений.

В подобных генбанках растения (виды, сорта), ежегодно высаживаются на поля, тщательно изолируются от возможного переопыления, и уже семена нового урожая отправляются в хранилища. Без пересадки и «освежения» семенного материала, теряется всхожесть, хотя самые первые оригинальные семена, которые поступили в банк, не выбрасываются, а точно так же хранятся уже многие десятки лет.

Кроме хранения, генбанки проводят различные научные исследования по биологическому и генетическому разнообразию. Например, изучают генетические профили экземпляров в коллекциях, сравнивают их. Все, наверное, слышали про методы генетических «отпечатков пальцев», который используется в криминалистике, где каждый конкретный индивидуум имеет свой оригинальный генетический профиль? Я не буду вдаваться в детали, но скажу, что подобные методы используются и для паспортизации сортов. Так вот, наконец-то кому-то пришла в голову очевидная на первый взгляд идея, сравнить генетические профили растений из семян, которые поступили в коллекцию очень давно, и тех, которые ежегодно скурпулезно высаживались, но одного и того же сорта.
И в общем-то, вполне предсказуемо обнаружилось, что уже за несколько десятков лет накопилось достаточное количество изменений в геноме растений, которое отразилось и на генетическом профиле. То есть генетически эти растения уже очень сильно отличаются. Причин этому много – это и мутационный эффект окружающей среды, и миграция по геному мобильных элементов, и спонтанный мутагенез, и вирусные инфекции. Мы наблюдаем факт, что уже через несколько поколений без нашего дополнительного вмешательства в обычной традиционной кукурузе, пшенице, горохе, которые вывели наши предки, происходят изменения в геноме, которые отражаются в фенотипе, биохимическом составе, или каких либо качествах растения – устойчивости или времени цветения. Вы спросите, почему мы их не замечаем? Во-первых, не все мутации проялвяются вообще, если они касаются третьего нуклеотида в кодоне. Во-вторых, далеко не все мутации зримо проявляются в фенотипе. Очень часто это незаметные глазу изменения состава белков или углеводов, или изменения времени цветения, или расстояние между почками, или длина корешков, или длительность созревания. Это те признаки, которые могут быть интересными только для специалиста. И наконец, очень редко мутации ощутимо влияют на жизнеспособность.

Тех, кого действительно взволновала нестабильность растительного генома, я сейчас успокою. Особенность растений, в отличии от животных, в том, что они неспособны «убежать» от неблагоприятных условий окружающей среды. Именно этим объясняют наличие у растений оргомного числа различных обходных биохимических путей, компенсирующих «поломки». Я много работаю с трансгенными растениями, в общем-то моя работа и заключается в том, чтобы какие-то гены «включать» или «выключать» в растениях и смотреть, как это внешне или внутренне проявляется с целью определить их функцию. Должна сказать, что в подавляющем количестве случаев вообще незаметно никакого эффекта и только скурпулезный биохимический анализ метаболитов и работы всех известных генов, показывает, что «хитрое» растение включило обходной путь в ответ на поломку.

Таким образом, пора забыть о том, что предки вывели и протестировали на себе хорошие сорта, а нам не стоит улучшать и экспериментировать. Процесс селекции непрерывный, он продолжается и мы тестируем на себе его результаты, независимо от того, традиционный ли это сорт, или ГМО. В этом смысле ГМО даже лучше. Почему? Потому что мы хотя бы знаем, что там поменялось.

Тут я расскажу еще одну историю из экспериментальной практики. Поступил нам в работу мутант ячменя с дефектом развития семени. Десять лет тому назад. За 10 лет тщательно рассмотрели по дням с момента опыления развитие семени под микроскопом. Описали. Изучили у него, какие гены включаются, а какие выключаются в различных тканях семени с того самого первого дня. Изучили вдоль и поперек метаболизм всех возможных биохимических путей. Уже все знаем. Не знаем одного – какой ген мутировал. И не узнаем, потому что с помощью этих подходов найти мутацию невозможно. А раз так, то мы и не узнаем, как выглядит тот мутировавший белок. А может он аллерген? А может он токсичный? А может, наоборот, полезный? Или нейтральный. Мы ничего о нем не знаем, кроме того, что его дефектная работа вызывает серьезные поломки в структуре семени, о которых мы уже знаем почти все.

Таким образом, мы можем допустить, что в результате спонтанного мутагенеза или мутагенеза, используемого в классической селекции, постоянно возникают белки с возможно новой конфигурацией, которые могут быть потенциальными аллергенами. Проблема в том, что мы не искали, мало того, мы даже не знаем, что искать. Мы можем приблизительно протестировать на потенциальную аллергенность. Мы также можем попытаться найти среди тысяч различных потенциальных аллергеных именно тот, который вызывает аллергическую реакцию. Я буквально на днях наткнулась на интересную работу по поиску белка с аллергенными свойствами в пыльце оливкого дерева. Это очень сложная работа, белок определили, но вот роль его совершенно не ясна.

И несомненное преимущество ГМО в том, что это как раз тот случай, что мы не просто знаем, что мы встроили и куда мы встроили, можем проверить его на аллергенность, токсичность, мы можем его отследить в поколениях и определить наличие в продуктах. Поэтому никого не должны смущать различные статьи об эффекте ГМО на организм, изучение его влияния, как потенциальный индуктор воспаления, например. Это нужные и правильные работы, возможно действительно обнаружится негативный эффект о котором мы будем знать и впредь делать выводы, дискутировать на эту тему и продолжать изучать. Но мы должны помнить, что эти работы существуют только по одной причине – мы знаем что искать.

В эту же тему отличная статья из economist.com: "Today scientists use thermal neutrons, X-rays, or ethyl methane sulphonate, a harsh carcinogenic chemical—anything that will damage DNA—to generate mutant cereals. Virtually every variety of wheat and barley you see growing in the field was produced by this kind of “mutation breeding”. No safety tests are done; nobody protests. "

Не поленитесь, ознакомьтесь с современными методами селекции. Там же есть ссылки на фото, как это выглядит в жизни.


В следующей серии мы более внимательно рассмотрим то, что уже известно о ГМО. Обладают ли они какими-то качествами, которые принципиально отличают их традиционных сортов. Это какая-то другая ДНК? Как их исследуют?

Продолжение. Часть 4. Судьба ДНК в пищеварительном тракте и горизонтальный перенос генов.

Tags:

Date: 2009-06-16 10:02 am (UTC)
From: [identity profile] russian-o.livejournal.com
Направление синтеза всегда только одно, если речь идет и синтезе белка на РНК-матрице. Белок, конечно, сразу начинает осциллировать между разными конформациями, в соответствии со своей последовательностью, на счет участия шаперонов непосредственно во время синтеза не знаю, но это картины в целом не меняет.

Date: 2009-06-16 04:24 pm (UTC)
From: [identity profile] a-bronx.livejournal.com
Не, я имел в виду две РНК, на которых записана одна и та же последовательность, но в противоположном порядке. Т.е. белки будут иметь одинаковую первичную структуру, но синтезированы в разном порядке. Будут ли они иметь одинаковую вторичную структуру и далее?

Вопрос этот возник ещё во времена увлечения программами фолдинга белков. Там обычно берут полипептид, помещают его целиком в среду, развёрнутым в линию, и пытаются найти глобальный экстремум энергии связи. При этом история синтеза не учитывается, т.е. неважно, в каком порядке была синтезирована последовательность, что происходило со свободным концом во время синтеза и т.п. А ведь может оказаться, что во время синтеза на свободном конце возникают узлы или блоки, которых простым "отжигом" не получить, и которые фактически заводят фолдинг в локальный экстремум. Это как вязание на спицах: носок фолдингом не получить, нужна последовательная вязка.

Date: 2009-06-16 04:38 pm (UTC)
From: [identity profile] a-bronx.livejournal.com
(речь, конечно, о пептидной последовательности, а не о нуклеотидной)

Profile

progenes: (Default)
progenes

March 2025

S M T W T F S
      1
2345678
9101112131415
1617 1819202122
23242526272829
3031     

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jun. 17th, 2025 11:14 pm
Powered by Dreamwidth Studios